ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES,

ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE,

DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS,

DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE,

ÉCOLE POLYTECHNIQUE

(Option T.A.)

CONCOURS D'ADMISSION 1988

MATHÉMATIQUES

PREMIÈRE ÉPREUVE

OPTION M,P',T.A

(Durée de l'épreuve : 4 heures)

Notations et objectif du problème

On désigne par $\mathbf{C}^{\infty}(\mathbb{R})$ (resp. par $\mathbf{C}^{\infty}(\mathbb{R}^*_+)$) le \mathbb{C} -espace vectoriel de toutes les applications de \mathbb{R} dans \mathbb{C} (resp. de $]0,+\infty[$ dans \mathbb{C}) qui sont indéfiniment dérivables. Le \mathbb{C} -espace vectoriel des fonctions complexes de deux variables réelles (x,y) définies et pourvues de dérivées partielles continues à tous les ordres dans l'ouvert $\mathbf{D}=\{(x,y)\in\mathbb{R}^2|x>0,y>0\}$ est noté $\mathbf{C}^{\infty}(\mathbf{D})$. Si f est un élément de $\mathbf{C}^{\infty}(\mathbf{D})$, les parties réelle et imaginaire de f sont des fonctions de $\mathbf{C}^{\infty}(\mathbf{D})$ à valeurs réelles telles que f=g+ih et, par exemple :

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial x} + i \frac{\partial h}{\partial x}.$$

Dans le cours du problème, on utilise les deux fonctions suivantes, éléments de $\mathbf{C}^{\infty}(\mathbf{D})$:

$$t:(x,y)\mapsto \frac{y}{x}$$

$$r: (x,y) \mapsto (x^2 + y^2)^{\frac{1}{2}}.$$

On admettra que si f est élément de $\mathbf{C}^{\infty}(\mathbf{D})$, il existe une fonction unique notée \widetilde{f} élément de $\mathbf{C}^{\infty}(\mathbf{D})$, telle que pour tout couple (x,y) de \mathbf{D}

$$f(x,y) = \widetilde{f}\left((x^2 + y^2)^{\frac{1}{2}}, \frac{y}{x}\right).$$

(Le second membre pouvant être encore notée $\widetilde{f}(r,t)$.)

Le produit habituel de deux fonctions f et g est noté fg. Si f est à valeurs réelles (resp. à valeurs réelles strictement positives) indéfiniment dérivable dans $\mathbf D$ et si φ , est un élément de $\mathbf C^\infty(\mathbb R)$ (respectivement si φ est un élément de $\mathbf C^\infty(\mathbb R_+^*)$), $\varphi \circ f$ ou $\varphi(f)$ désigne la fonction composée, élément de $\mathbf C^\infty(\mathbf D)$ qui associe à (x,y) de $\mathbf D$ le nombre $\varphi(f(x,y))$.

La fonction f de $\mathbf{C}^{\infty}(\mathbf{D})$ étant donnée, on lui associe $\mathbf{T}(f)$ noté aussi $\mathbf{T}f$ élément de $\mathbf{C}^{\infty}(\mathbf{D})$, défini pour tout (x,y) de \mathbf{D} par :

$$\mathbf{T}f(x,y) = x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y).$$

L'application \mathbf{T} ainsi définie de $\mathbf{C}^{\infty}(\mathbf{D})$ dans $\mathbf{C}^{\infty}(\mathbf{D})$ est un endomorphisme. Pour tout complexe α on définit le noyau N_{α} , de l'endomorphisme $\mathbf{T} - \alpha \mathbf{I}$ où \mathbf{I} est l'application identique de $\mathbf{C}^{\infty}(\mathbf{D})$:

$$\mathbf{N}_{\alpha} = \{ f \in \mathbf{C}^{\infty}(D) \mid \mathbf{T}f - \alpha f = 0 \}.$$

L'objectif du problème est l'étude des divers noyaux \mathbf{N}_{α} et de noyaux de polynômes de \mathbf{T} , ce qui conduit à la résolution de certaines équations aux dérivées partielles dans le domaine \mathbf{D} .

Partie I

- 1. (a) f et g étant deux éléments de $\mathbb{C}^{\infty}(\mathbb{D})$, exprimer $\mathbb{T}(fg)$ en fonction de $f, g, \mathbb{T}f$ et $\mathbb{T}g$.
 - (b) Soit f un élément de $\mathbf{C}^{\infty}(\mathbf{D})$ auquel on associe, comme il est dit dans le préambule, \widetilde{f} telle que $f(x,y)=\widetilde{f}(r,t)$. Exprimer $\mathbf{T}f$ à l'aide notamment des dérivées partielles de \widetilde{f} notées :

$$\frac{\partial \widetilde{f}}{\partial r}$$
 et $\frac{\partial \widetilde{f}}{\partial t}$.

- (c) Soit f, à valeurs réelles, élément de $\mathbb{C}^{\infty}(\mathbb{D})$, calculer $\mathbb{T}(\varphi \circ f)$ où φ est un élément de $\mathbb{C}^{\infty}(\mathbb{R})$.
- **2.** Étude de N_0 .
 - (a) Calculer Tt.
 - (b) Montrer que si $\varphi \in \mathbf{C}^{\infty}(\mathbb{R}_{+}^{*})$, alors $\varphi \circ t \in \mathbf{N}_{0}$.
 - (c) Déduire des questions précédentes une expression générale des fonctions de N_0
- 3. Étude de N_1 .
 - (a) Calculer Tr.
 - (b) Soit $\varphi \in \mathbf{C}^{\infty}(\mathbb{R}_{+}^{*})$, exprimer $\mathbf{T}(\varphi \circ r)$ et en déduire $\mathbf{T}(r^{k})$ où l'exposant k est arbitraire dans \mathbb{Z} .
 - (c) Montrer l'équivalence :

$$f \in \mathbf{N}_1 \Longleftrightarrow r^{-1} f \in \mathbf{N}_0.$$

En déduire une expression générale des fonctions de N_1 .

- **4.** Étude de N_{α} .
 - (a) Déterminer, de manière analogue à ce qui précède, une expression générale des fonctions de N_k où k est arbitraire dans \mathbb{Z} .
 - (b) Lorsque α est un complexe, on pose $r^{\alpha}=e^{\alpha \ln r}$. Calculer $\mathbf{T}(r^{\alpha})$ et en déduire une expression générale des éléments de \mathbf{N}_a .

Partie II

Dans cette partie, on suppose donnés deux nombres complexes α et β , une fonction g non nulle élément de \mathbf{N}_{β} et une fonction φ_0 élément de $\mathbf{C}^{\infty}(\mathbb{R}_+^*)$. On se propose de résoudre l'équation d'inconnue f, élément de $\mathbf{C}^{\infty}(\mathbf{D})$:

$$\mathbf{T}f - \alpha f = g\varphi_0(r).$$

1. On suppose d'abord $\varphi_0 = 1$, l'équation devenant alors :

(1)
$$\mathbf{T}f - \alpha f = g.$$

- (a) On suppose en outre $\alpha \neq \beta$. Montrer que l'équation (1) admet une solution particulière f_0 proportionnelle à g. En déduire l'expression générale des solutions de (1).
- (b) On suppose maintenant $\alpha = \beta$. Montrer qu'il existe une solution particulière de l'équation (1) qui est de la forme $f_0 = \varphi(r)g$ où φ est une fonction de $\mathbf{C}^{\infty}(\mathbb{R}_+^*)$ que l'on explicitera. En déduire la forme de la solution générale de (1).
- 2. Résoudre les équations suivantes où f élément de $\mathbf{C}^{\infty}(\mathbf{D})$ est l'inconnue :

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) - f(x,y) = \frac{x^2 + y^2 - xy}{x^2 + y^2 + xy}, \ \forall (x,y) \in \mathbf{D}$$

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) - 2f(x,y) = \frac{(x^2 + y^2)(x-y)}{x+y}, \ \forall (x,y) \in \mathbf{D}$$

3. Dans cette question, g est un élément de \mathbf{N}_{β} et φ_0 est une fonction, élément de $\mathbf{C}^{\infty}(\mathbb{R}_+^*)$. On se propose de résoudre avec ces données l'équation :

(2)
$$\mathbf{T}f - \alpha f = g\varphi_0(r).$$

- (a) Montrer qu'il existe une solution particulière de l'équation (2) qui est de la forme $f_0 = \varphi(r)g$ où la fonction φ est un élément de $\mathbb{C}^{\infty}(\mathbb{R}_+^*)$ s'exprimant à l'aide de la fonction φ_0 . En déduire l'expression générale des solutions de l'équation (2), expression dans laquelle figure une intégrale.
- (b) Trouver, en particulier, les solutions de l'équation :

$$\mathbf{T}f - \alpha f = g \ln r$$

où g est un élément donné de \mathbf{N}_{α} (autrement dit : $\beta = \alpha$).

Partie III

On définit les puissances successives de l'endomorphisme T de $C^{\infty}(D)$ de la façon habituelle :

$$\forall f \in \mathbf{C}^{\infty}(\mathbf{D}), \ \mathbf{T}^2 f = \mathbf{T}(\mathbf{T}f)$$

$$\mathbf{T}^n f = \mathbf{T}(\mathbf{T}^{n-1} f), \quad (n > 2).$$

- **1.** Trouver l'expression générale des fonctions f de $\mathbf{C}^{\infty}(\mathbf{D})$ telles que $\mathbf{T}^2 f = 0$.
- 2. g étant une fonction donnée dans \mathbf{N}_0 , trouver l'expression générale des fonctions f de $\mathbf{C}^{\infty}(\mathbf{D})$ solutions de $\mathbf{T}^2 f = g$ (On pourra passer par l'immédiat de la nouvelle fonction inconnue $u = \mathbf{T}f$)
- 3. En raisonnant par récurrence, déduire de ce qui précède l'expression générale des fonctions f constituant le noyau de l'endomorphisme \mathbf{T}^n . (On montrera, en particulier, que cette expression fait intervenir n fonctions arbitraires.)

Partie IV

1. α et β sont, à nouveau, deux nombres complexes donnés non tous deux nuls. Résoudre dans $\mathbf{C}^{\infty}(\mathbf{D})$:

$$(\mathbf{T} - \alpha \mathbf{I}) \circ (\mathbf{T} - \beta \mathbf{I}) f = 0$$

2. α, β, γ étant trois complexes donnés, résoudre l'équation :

$$(\mathbf{T} - \alpha \mathbf{I}) \circ (\mathbf{T} - \beta \mathbf{I}) f = g$$

où g est donnée dans N_{γ} . On discutera suivant les valeurs de α, β, γ .

3. Résoudre l'équation d'inconnue f ($f \in \mathbf{C}^{\infty}(\mathbf{D})$):

$$\forall (x,y) \in \mathbf{D}, \ x^2 \frac{\partial^2 f}{\partial x^2}(x,y) + y^2 \frac{\partial^2 f}{\partial y^2}(x,y) + 2xy \frac{\partial^2 f}{\partial x \partial y}(x,y) = kf(x,y),$$

où k est un nombre complexe donné.